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Abstract
We consider the problem of motion-induced photon creation from quantum
vacuum inside closed, perfectly conducting cavities with time-dependent
geometries. These include one-dimensional Fabry–Perot resonators with
Dirichlet or Neumann boundary conditions, three-dimensional cylindrical
waveguides, and a spherical shell. The number of Casimir TE, TM and TEM
photons is computed. We also present a classical mechanical analogue of the
one-dimensional dynamical Casimir effect.

PACS numbers: 42.50.Lc, 42.40.Dv

1. Introduction

Conversion of zero-point quantum fluctuations into real particles occurs in quantum field theory
under the influence of time-dependent external conditions. This effect is generally known as
the dynamical Casimir effect (DCE). Examples range from cosmology, such as particle creation
in curved spacetimes [1], to cavity QED, such as photons production in Fabry–Perot cavities
with moving mirrors [2–9]. In this latter context, on which we will concentrate in this present
contribution, the periodic modulation of the boundary conditions of the electromagnetic field
resonantly excites particular modes of the field, transforming the initial vacuum state into a
squeezed state, thereby creating real photons. Up to now no experimental verification of the
effect has been reported in the literature. The main difficulties are the stringent requirements
on the modulation frequency, amplitude and optical quality factor of the cavity. There are a
few ongoing experimental projects to demonstrate different variants of the dynamical Casimir
effect. One of them is being carried out in the MIR experiment [10], and it is based on the idea
that when a thin semiconductor layer inside a high-Q cavity is periodically illuminated by laser
pulses, its conductivity properties are periodically modulated, and this simulates an effecting
moving mirror. Another project, under development at Dartmouth [11], aims at detecting
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atomic transitions of ultracold atomic samples induced by Casimir photons produced inside
cavities with high-frequency nanoresonators.

In this paper, we report on analytical methods to study the dynamical Casimir effect
in different dimensions and different geometries, both for scalar fields and for the full
electromagnetic field. We start in section 2 by briefly reviewing the computation of motion-
induced scalar particles in 1+1 dimensions. We show that Moore’s formalism [2], originally
used to treat Dirichlet boundary conditions, can be straightforwardly extended to Neumann
boundary conditions. In order to gain some intuitive picture of the dynamical Casimir effect, we
present in section 3 a classical mechanical simulator of the 1+1 DCE. The full electromagnetic
dynamical Casimir effect inside perfectly conducting cavities with time-dependent boundaries
is reviewed in section 4, where we deal with TEM modes in non-simply connected cavities,
and in section 5, where TE and TM modes are considered in waveguides and in a spherical
shell.

2. 1+1 dynamical Casimir effect: Dirichlet and Neumann boundary conditions

Let us consider a massless real scalar field in a one-dimensional cavity with one end fixed
at z = 0 and the other performing an oscillatory motion L(t) = L0[1 + ε sin(�t)], where
ε � 1,� = qπ/L0, and q ∈ N. We shall assume that the oscillations begin at t = 0 and end
at t = T . The scalar field φ(z, t) satisfies the wave equation � φ = 0.

We first review the case of Dirichlet boundary conditions: φ(z = 0, t) = φ(L(t), t) = 0.
In this case, one can express the field inside the cavity as a sum of modes

φ(z, t) =
∞∑

k=1

[
akψk(z, t) + a

†
kψ

∗
k (z, t)

]
, (1)

where the mode functions ψk(z, t) are positive frequency modes for t < 0, normalized
according to the Klein–Gordon inner product, and ak and a

†
k are time-independent bosonic

annihilation and creation operators, respectively. The field equation is automatically verified
writing the modes in terms of Moore’s function R(t) [2] as

ψk(z, t) = i√
4πk

(e−ikπR(t+z) − e−ikπR(t−z)). (2)

The Dirichlet boundary condition is satisfied provided that R(t) satisfies Moore’s equation

R(t + L(t)) − R(t − L(t)) = 2. (3)

Let us now extend this treatment to Neumann boundary conditions. In the instantaneous
frame where the moving boundary is at rest they read nµ∂µφ|boundary = 0, where nµ is a
unit two-vector perpendicular to the trajectory of the boundary. In the laboratory frame these
boundary conditions read

∂zφ|z=0 = 0, (∂z + L̇∂t )φ|z=L(t) = 0. (4)

The field inside the cavity can be expanded as a sum of modes

φ(z, t) = A + Bφ0(z, t) +
∞∑

k=1

[
akφk(z, t) + a

†
kφ

∗
k (z, t)

]
. (5)

The first two terms correspond to the quantization of the zero mode. The time-independent,
Hermitian operators A and B satisfy the commutation relations [A,B] = i, and [A, ak] =
[B, ak] = 0. In analogy to the quantization of an open string [12], the operator A corresponds
to the initial position of the centre of mass of the string, while the operator B is associated



The dynamical Casimir effect for different geometries 6263

with the average momenta of the string. The Hilbert space associated with the zero mode can
be spanned by the eigenstates |b〉 of the momentum operator B: B|b〉 = b|b〉. For t < 0 the
zero mode function is position independent φ0(t < 0) = t/L0. For t > 0, it can be written in
terms of Moore’s function as

φ0(z, t) = 1
2 [R(t + z) + R(t − z)]. (6)

The other mode functions φk(z, t) are positive frequency modes for t < 0, and satisfy
instantaneous Neumann boundary conditions. Analogously to equation (2) for the Dirichlet
case, these modes can be written in terms of Moore’s function R(t) as

φk(z, t) = 1√
4πk

(e−ikπR(t+z) + e−ikπR(t−z)). (7)

Note the change of sign between equation (2) for Dirichlet modes, and equation (7) for
Neumann modes. Taking the time derivative of Moore’s equation for R(t) it is straightforward
to prove that this expression for the modes automatically verifies Neumann boundary
conditions (4) in the laboratory frame, both at z = 0 and z = L(t).

The complete solution to the problem for both types of boundary conditions involves
finding a solution R(t) in terms of the prescribed motion L(t). The modes are positive
frequency modes for t < 0 if R(t) = t/L0 for −L0 � t � L0, which is indeed a solution
to equation (3) for t < 0. For t > 0, equation (3) can be solved, for example, using a
renormalization group improvement of the perturbative solution [13]. Such an improvement
is needed because the perturbative solution contains secular terms, and is therefore valid only
for short times ε�t � 1. The RG-improved solution, valid for longer times ε2�t � 1, reads

R(t) = t

L0
− 2

πq
Im ln

[
1 + ξ + (1 − ξ) e

iqπt

L0
]
, (8)

where ξ = exp[(−1)q+1πqεt/L0]. The function R(t) develops a staircase shape for long
times [13, 14]. Within regions of t between odd multiples of L0 there appear q jumps, located
at values of t satisfying cos(qπt/L0) = ∓1, the upper sign corresponding to even values of q
and the lower one to odd values of q.

The energy density of the field is given by 〈T00(x, t)〉 = −f (t + z)−f (t − z) [15], where

f = 1

24π

[
R′′′

R′ − 3

2

(
R′′

R′

)2

+
π2

2
(R′)2

]
. (9)

This expression is valid both for Dirichlet and Neumann boundary conditions. The expectation
value is taken in the vacuum state. In the Dirichlet case this vacuum state is annihilated by
all ak , i.e., ak|0〉 = 0. In the Neumann case, the vacuum state is annihilated by both B
and ak: B|0〉 = ak|0〉 = 0. For other initial quantum states some differences may arise
[16]. For example, when the initial state |i〉 satisfies B|i〉 = b|i〉, and ak|0〉 = 0, in the
Neumann case the mean value of the energy density contains an additional term proportional
to b2[(R′(t + z))2 + (R′(t − z))2]. In what follows, we consider the b = 0 case. For q = 1
(‘semi-resonant’ case) no exponential amplification of the energy density is obtained, whereas
for q � 2 (‘resonant’ case) the energy density grows exponentially in the form of q travelling
wave packets which become narrower and higher as time increases. The number of created
particles can be computed from the solution (8). Photons are created resonantly in all modes
with n = q + 2j , with j a non-negative integer. This is due to the fact that the spectrum
of a one-dimensional cavity is equidistant: although the external frequency resonates with
a particular eigenmode of the cavity, intermode coupling produces resonant creation in the
other modes. While the number of photons in each mode grows quadratically in time, the
total energy inside the cavity grows exponentially. The spectrum of motion-induced photons
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L(t)

Figure 1. A mechanical analogue of the dynamical Casimir effect. A moving plate with a hole
enforces the Dirichlet boundary condition at the position L(t).

is the same for both Dirichlet and Neumann boundary conditions. This can be confirmed
by expressing the Bogoliubov coefficients in terms of Moore’s function, starting from
equations (2) and (7).

3. A mechanical analogue of the 1+1 dynamical Casimir effect

It is well known that one can excite transversal waves in an elastic string by stretching it
longitudinally. This is the famous Melde experiment, discussed in many elementary physics
courses [17]. For a periodic stretching, there is a parametric resonance effect when the external
frequency equals twice the frequency of an eigenmode of the string (the resonance makes non-
linearities to become important as time goes on, but we will not discuss this issue here). That
particular eigenmode is amplified resonantly. What is less known is that one can also excite
transversal oscillations on the string by changing its length, even keeping a constant tension
(see figure 1). This situation has been considered a long time ago to illustrate the radiation
pressure: a string with both ends fixed that passes through a small hole on a plate that moves
along the string [18]. We will use this classical mechanical system as a simulator of the
dynamical Casimir effect.

Let us denote by y(z, t) the transversal displacement of the string, and by v0 the velocity
of wave propagation. After rescaling time as t → v0t, y satisfies the wave equation(
∂2
zz − ∂2

t t

)
y = 0, with Dirichlet boundary conditions at both ends of the string and at the

position of the hole. As we assume that the plate is a perfect reflector, we can consider
independently the parts of the string which are the left or the right of the hole. At the classical
level, the problem for each part of the string is equivalent to the 1+1 dynamical Casimir effect
for a massless field. Therefore, we can solve for y(z, t) using Moore’s approach. Let us
assume that for t < 0 the plate is fixed at the position z = L0, and that the portion of the string
0 < z < L0 is vibrating in its eigenmode k, i.e., y(z, t < 0) = 2ak sin(kπz/L0) cos(kπt/L0).
When the plate starts to move at t > 0, following a prescribed trajectory L(t), the solution is

y(z, t > 0) = ak[sin(kπR(t + z)) − sin(kπR(t − z))], (10)

where R(t) satisfies Moore’s equation (3). Assuming that the plate oscillates around L = L0

at a frequency � = 2kπ/L0, the function R(t) is explicitly given by equation (8) with q = 2k.
Due to the staircase form of this function, one can readily check that the string develops q
peaks that bounce back and forth between the fixed end at x = 0 and the moving plate at
z = L(t) (see figure 2). The energy density is of the form ρE = T [g(t + z) + g(t − z)], where
T is the tension of the string and g(t) = (

a2
k

/
2
)

cos2(kπR(t))Ṙ2(t). It also develops q peaks
as time goes on (see figure 3).

In order to excite transversal oscillations, it is necessary to have an initial classical wave
on the string. This ‘seed’ is amplified by parametric resonance due to the motion of the plate.
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Figure 2. Pulses on the string induced by a time-dependent length. We plot the transversal
displacement y(z, t) as a function of z for a fixed time. We assume k = 1, L = 1 m, a1 = 0.01 m,
v = 1 m s−1, q = 2, and t = 50.3 s.
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Figure 3. Pulses in the energy density of the string. We plot ρE/T as a function of z for a
fixed time. The parameters are as in the previous figure. Each pulse has two peaks, the minimum
between them corresponding to the maximum of y(z, t) in figure 2. Note that at those points
∂t y = ∂zy = 0, and therefore ρE = 0.

The dynamics of the string with time-dependent length is completely different from the usual
Melde experiment (in which the tension depends on time) since in that case only one mode
is excited by parametric resonance. In the quantum case, starting from vacuum, there are no
classical vibrations initially. However, the initial conditions of the modes are non-trivial due
to the Heisenberg uncertainty principle. These initial conditions are amplified by parametric
resonance, and the evolution of the modes produces a non-trivial energy density inside the
cavity. This simple analogy will allow us to understand why the dynamical Casimir effect is
non-trivial for spherical cavities and for cylindrical cavities with a time-dependent radius (see
below).

4. TEM modes: a physical realization of the 1+1 dynamical Casimir effect

A cylindrical and non-simply connected cavity admit TEM modes, for which both the electric
and magnetic fields have vanishing longitudinal components. Denoting by z the coordinate
along the axis of the cavity and by x⊥ the coordinates along the perpendicular plane, the
potential vector A for the TEM solutions is

A(x⊥, z, t) = A⊥(x⊥)ϕ(z, t), (11)

where A⊥ is a solution of an electrostatic problem in the two transverse dimensions. Note
that this electrostatic solution does not exist in a simply connected cavity. The scalar field ϕ

satisfies Dirichlet boundary conditions on the longitudinal boundaries z = 0 and z = Lz(t),
and the longitudinal wave equation

(
∂2
t −∂2

z

)
ϕ = 0. For a static cavity, the eigenfrequencies of

the TEM modes are wn = nπ/Lz. Note that this is an equidistant spectrum. The Hamiltonian
associated with TEM modes is

H TEM = 1

8π

∫
d2x⊥ dz(E2 + B2) = 1

8π

(∫
d2x⊥|A⊥|2

) ∫
dz[(∂tϕ)2 + (∂zϕ)2]. (12)
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The above equations show that the quantization of TEM modes is equivalent to the quantization
of a massless real scalar field in 1+1 dimensions, satisfying Dirichlet boundary conditions at
z = 0 and z = Lz(t). Therefore, the results of section 2 describe the evolution of the
electromagnetic energy density inside a non-simply connected cavity with time-dependent
length. As we will see, this evolution is very different from those of the TE and TM modes.

5. 3D cavities: TE and TM modes

5.1. Hertz potentials formalism

When studying the quantization of the full electromagnetic field inside cavities with moving
boundaries, it is convenient to express the physical degrees of freedom of the electromagnetic
field in terms of Hertz potentials [19–21]. The standard vector A and scalar 
 potentials are
written in terms of the electric Πe and magnetic Πm vector Hertz potentials as 
 = − 1

ε
∇ ·Πe

and A = µ∂Πe

∂t
+ ∇ × Πm, where ε is the electric permittivity, and µ is the magnetic

permeability. In vacuum, at points away from the sources, it is possible to write each of
the vector Hertz potentials in terms of scalar Hertz potentials,

Πe = φTM ê, Πm = φTE ê, (13)

where ê is a unit vector. For example, in the case of waveguides ê is the unit vector along the
axis of the waveguide, say ẑ, and for a spherical cavity it is the radial unit vector r̂. The field
φTE gives rise to TE fields with respect to ê, whereas φTM represents TM fields. Alternatively
[22, 23], it is also possible to use two vector potentials ATE and ATM related to the above-
defined scalar Hertz potentials as ATE = ê × ∇φTE and ATM = ê × ∇φTM. The EM field
inside moving cylindrical or spherical cavities with perfect conducting moving boundaries
can be described in terms of these two independent scalar Hertz potentials, as no mixed
terms appear in Maxwell’s Lagrangian or Hamiltonian. For cylindrical cavities, the scalar
Hertz potentials satisfy the Klein–Gordon equation. In the spherical case, the Klein–Gordon
equation is satisfied by the so-called Debye potentials ψTE,TM = φTE,TM/r .

The boundary conditions of the scalar Hertz potentials on the static, perfectly reflecting
boundaries Sstatic of the cavity are the usual Dirichlet boundary condition for φTE, and the
usual Neumann condition for φTM. On the moving wall Smov these boundary conditions are
first imposed on the instantaneous moving reference frame, and then Lorentz transformed
to the laboratory frame. Denoting by d(t) the coordinate of the moving wall, the boundary
conditions read

φTE|Smov = 0; (∂e + ḋ∂t )φ
TM|Smov = 0. (14)

5.2. Photon creation in cylindrical cavities

In this subsection we consider the dynamical Casimir effect inside closed cylindrical cavities,
one of whose end caps is moving harmonically Lz(t) = L0[1 + ε sin(�t)], with ε � 1. We
assume that the motion starts at t = 0 and stops at t = T . The field equations for both scalar
Hertz potentials are �φTE = � φTM = 0, which should be solved under the time-dependent
boundary conditions described above. The quantization procedure has been described in detail
in previous papers [9, 24, 25]. Here we review the main results. At any given time 0 < t < T

both scalar Hertz potentials can be expanded in terms of an instantaneous basis

φTE,TM(x, t) =
∑

k

aIN
k C

TE,TM
k u

TE,TM
k (x, t) + c.c., (15)
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where aIN
k are bosonic operators that annihilate the IN vacuum state for t < 0, and C

TE,TM
k are

normalization constants (these must be appropriately included to obtain the usual form of the
electromagnetic Hamiltonian in terms of the electric and magnetic fields; see [25] for details).
The mode functions are

uTE
k =

∑
p

Q
(k)
p,TE(t)

√
2/Lz(t) sin

(
pzπz

Lz(t)

)
vp⊥(x⊥),

uTM
k =

∑
p

[
Q

(k)
p,TM(t) + Q̇

(k)
p,TM(t)g(z, t)

]√
2/Lz(t) cos

(
pzπz

Lz(t)

)
rp⊥(x⊥).

Here the index p = 0 is a vector of non-negative integers. Note that for the TM case the zero
mode p = 0 (that is z-independent and, in principle, is a possible solution to the field equations
and boundary conditions along the z-direction) is not a solution for the three-dimensional
(3D) problem we are considering, since it does not satisfy the boundary conditions on the
static surfaces. However, this zero mode (associated with Neumann boundary conditions)
is present in the case of the 1+1 dynamical Casimir effect, as was discussed in section 2.
The function g(z, t) = L̇z(t)Lz(t)ξ(z/Lz(t)) (where ξ(z) is a solution to the conditions
ξ(0) = ξ(1) = ∂zξ(0) = 0, and ∂zξ(1) = −1) appears when expanding the TM modes in an
instantaneous basis and taking the small ε limit. There are many solutions for ξ(z), but all of
them can be shown to lead to the same physical results [9]. The mode functions vp⊥(x⊥) and
rp⊥(x⊥) are described below for different types of cavities.

The mode functions Q
(k)
p,TE/TM satisfy second-order, mode-coupled linear differential

equations

Q̈
(k)
p,TE + ω2

p(t)Q
(k)
p,TE = 2λ(t)

∑
j

gpjQ̇
(k)
j,TE + λ̇(t)

∑
j

gpjQ
(k)
j,TE + O(ε2), (16)

and

Q̈
(k)
p,TM + ω2

k(t)Q
(k)
p,TM = −2λ(t)

∑
j

hjpQ̇
(k)
p,TM − λ̇(t)

∑
j

hjpQ
(k)
p,TM

− 2λ̇(t)L2
z(t)

∑
j

sjpQ̈
(k)
p,TM −

∑
j

Q̇
(k)
p,TM

[
sjpλ̈(t)L2

z(t) − λ(t)ηjp
]

− λ(t)L2
z(t)

∑
j

sjp∂
3
t Q

(k)
p,TM + O(ε2). (17)

In these equations, λ(t) = L̇z(t)/Lz(t), ωp(t) =
√

p2
⊥ + (pzπ/Lz(t))2, and the coupling

coefficients gjp, sjp, ηjp and hjp are defined in [9]. The above equations can be solved
using different approximation methods like multiple scale analysis, which is described in
our previous works [9, 24]. For the ‘parametric resonant case’ (� = 2ωk for some k) the
solutions present resonant behaviour (i.e., exponential growth). Moreover, for some particular
geometries and sizes of the cavities, different modes j and k can be coupled, provided either
of the resonant coupling conditions � = |ωk ± ωj| are met. When intermode coupling occurs
it affects the rate of photon creation, typically resulting in a reduction of that rate.

The solutions to the mode equations provide us with expressions of the Bogoliubov
coefficients Ak

p,TE/TM and Bk
p,TE/TM that relate the IN basis (t < 0, before the motion starts)

and the OUT basis (t > T , after the motion ends). The number of motion-induced photons
with a given wavevector k and polarization TE or TM can be calculated in terms of the
Bogoliubov coefficients Bk

p,TE/TM. Except for special geometries, in general the resonant
coupling conditions are not met: different k modes will not be coupled during the dynamics,
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and equations (16) and (17) reduce to the Mathieu equation for a single mode. In consequence,
the number of motion-induced photons in that given mode will grow exponentially. The growth
rate is different for TE and TM modes

〈Nk,TE(t)〉 = sinh2(λk,TEεt), 〈Nk,TM(t)〉 = sinh2(λk,TMεt), (18)

where λk,TE = k2
z

/
2ωk and λk,TM = (

2ω2
k − k2

z

)/
2ωk. When both polarizations are present,

the rate of growth for TM photons is larger than for TE photons, i.e., λk,TM > λk,TE.

Rectangular section. For a waveguide of length Lz(t) and transversal rectangular shape
(lengths Lx,Ly), the TE mode function is

vnx,ny
(x⊥) = 2√

LxLy

cos

(
nxπx

Lx

)
cos

(
nyπy

Ly

)
, (19)

with nx and ny non-negative integers that cannot be simultaneously zero. The TM mode
function is

rmx,my
(x⊥) = 2√

LxLy

sin

(
mxπx

Lx

)
sin

(
myπy

Ly

)
, (20)

where mx,my are integers such that mx,my � 1. The spectrum is

ωnx,ny ,nz
=

√
(nxπ/Lx)2 + (nyπ/Ly)2 + (nzπ/Lz)2. (21)

As an example, let us analyse the case of a cubic cavity of size L under the parametric
resonant condition � = 2ωk. The fundamental TE mode is doubly degenerate ((1, 0, 1) and
(0, 1, 1)) and uncoupled to other modes. The fundamental TM mode has the same energy as
the fundamental TE mode, and it is coupled to the TM mode (1, 1, 4). Motion-induced TM
photons are produced exponentially as exp(πεt/

√
2L), and much faster than TE photons.

Circular section. For a waveguide of length Lz(t) and transversal circular shape (radius R),
the TE mode function is

vnm(x⊥) = 1√
π

1

RJn(ynm)

√
1 − n2

/
y2

nm

Jn

(
ynm

ρ

R

)
einφ, (22)

where Jn denotes the Bessel function of nth order, and ynm is the mth positive root of the
equation J ′

n(y) = 0. The eigenfrequencies are given by

ωn,m,nz
=

√(ynm

R

)2
+

(
nzπ

Lz

)2

, (23)

where nz � 1. The TM mode function is

rnm(x⊥) = 1√
π

1

RJn+1(xnm)
Jn

(
xnm

ρ

R

)
einφ, (24)

where xnm is the mth root of the equation Jn(x) = 0. The spectrum is given by
equation (23) with ynm replaced by xnm and nz � 0. Denoting the modes by (n,m, nz),
the lowest TE mode is (1, 1, 1) and has a frequency ω111 = (1.841/R)

√
1 + 2.912(R/Lz)2.

This mode is uncoupled to any other modes, and the number of photons in this mode
grows exponentially in time as exp(πεt/

√
1 + 0.343(Lz/R)2Lz) when parametrically excited.

The lowest TM mode (0, 1, 0) is also uncoupled and has a frequency ω010 = 2.405/R .
The parametric growth is exp(4.81εt/R). For Lz large enough (Lz > 2.03R), the resonance
frequency ω111 of the lowest TE mode is smaller than that for the lowest TM mode. Then the
(1, 1, 1) TE mode is the fundamental oscillation of the cavity.
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5.3. Photon creation in spherical cavities

For the case of fields inside a spherical cavity with a time-dependent radius a(t) =
a0[1 + ε sin(�t)], the Debye potentials ψTE,TM satisfy the Klein–Gordon equation. The
mode functions can be written as

uTE
k�m =

∑
p

Q
(k)
p,TE(t)

√
2

a3(t)

1

 ′
�(�p)

�

(
�p

a(t)
r

)
Y�m(θ, φ), (25)

and

uTM
k�m =

∑
p

[
Q

(k)
p,TM(t) + Q̇

(k)
p,TM(t)g(r, t)

]
φp�m(r, a(t)), (26)

with

φp�m(r, a(t)) =
√

2

a3(t)

1

 ′
�(κ�p)

1√
κ2

�p − �(� + 1)
�

(
κ�p

a(t)
r

)
Y�m(θ, φ). (27)

The function g(r, t) can be expressed as g(r, t) = ȧ(t)a(t)v(r/a(t)), where v(1) = 0 and
v′(1) = −1. In equations (25) and (27), Y�m(θ, φ) denote the usual spherical harmonics, �k

is the kth zero of the spherical function �(x), and κ�k is the kth zero of ∂x[x�(x)] = 0. The
frequencies of the modes are given by

ωTE
�k = �k

a0
, ωTM

�k = κ�k

a0
. (28)

The equations of motion for the time-dependent coefficients Q
(k)
p,TE and Q

(k)
p,TM can be

obtained as in the previous cases [26]. For � = 0 the spectrum is equidistant, and the associated
spherically symmetric modes, present for the scalar fields ψTE,TM, do not contribute to the full
electromagnetic field because the vector potentials ATE and ATM are obtained by applying the
operator r × ∇. This is a manifestation of the fact that there is no classical electromagnetic
radiation with spherical symmetry. For � = 0, the spectrum for both TE and TM modes is not
equidistant, and there is no mode coupling for the lowest frequencies. For the resonant case
� = 2ω�n (� = 0) the number of photons created grows as exp(2γ εt), where

γTE = ωTE
�n

2
, γTM = ωTM

�n

2

1 + �(�+1)

κ2
�n

1 − �(�+1)

κ2
�n

. (29)

Although there are no degenerate TE and TM modes, it is interesting to remark that
γTE

/
ωTE

�n < γTM
/
ωTM

�n , as in the case of cylindrical cavities.
The mean value of the total angular momentum of the electromagnetic field inside the

cavity vanishes in the vacuum state. Due to the spherical symmetry of the problem it must
be zero for all times. It is possible to check that photons are created in singlet states [26].
Because of the Gauss law, the classical electromagnetic field does not contain a time-dependent
� = 0 mode. Therefore, the assumption of spherical symmetry kills any classical radiation.
However, at the quantum level, all modes with � = 0 have non-vanishing fluctuations, which
act as ‘seeds’ for the dynamical Casimir effect. A similar argument applies to the case of
non-vanishing photon creation in cylindrical cavities with a time-dependent radius [27].

6. Conclusions

Motion-induced radiation has a broad interest in the context of quantum field theory under
the influence of external conditions. The ongoing challenging projects to demonstrate
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experimentally this tiny effect deserve theoretical efforts to compute it in different situations
and with different approximations. In this paper, we calculated the resonant photon creation
for cylindrical and spherical cavities with time-dependent sizes. We obtained the photon
creation rates for TE and TM modes. We also considered the dynamical Casimir effect in 1+1
dimensions, both with Dirichlet and Neumann boundary conditions, and showed that this toy
model can be realized physically by TEM modes in a coaxial cylindrical waveguide.
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